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The spectrum of the Lipkin-Meshkov-Glick model is exactly derived in the thermodynamic limit by means
of a spin-coherent-state formalism. In the first step, a classical analysis allows one to distinguish between four
distinct regions in the parameter space according to the nature of the singularities arising in the classical energy
surface; these correspond to spectral critical points. The eigenfunctions are then analyzed more precisely in
terms of the associated roots of the Majorana polynomial, leading to exact expressions for the density of states
in the thermodynamic limit. Finite-size effects are also analyzed, leading in particular to logarithmic correc-
tions near the singularities occurring in the spectrum. Finally, we also compute expectation values of the spin
operators in a semiclassical analysis in order to illustrate some subtle effects occurring in one region of the
parameter space.
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I. INTRODUCTION

The Lipkin-Meshkov-Glick �LMG� model was proposed
in 1965 to describe shape phase transitions in nuclei �1–3�.
This model is often used to describe the magnetic properties
of molecules such as Mn12 acetate �4�. However, it also cap-
tures the physics of interacting bosons in a double-well-like
structure �5,6� and is thus relevant to �two-mode� Bose-
Einstein condensates �7� as well as Josephson junctions. It
has also been recently used in optical cavity quantum elec-
trodynamics in its dissipative version �8,9� for studying the
decoherence of a single spin coupled to a spin bath �10,11� or
quench dynamics �12�. Note also that, in recent years, the
entanglement properties of its ground state �13–22� as well
as the finite-size behavior �23–26� have focused much atten-
tion on this model.

An exact solution of this model has been derived �27–29�,
but it requires the solution of Bethe-like equations, which is
more costly in terms of computational effort than exact di-
agonalization. Although the low-energy physics of the model
has been widely studied through different approaches �varia-
tional �1,30,31�, bosonization �23,32,33�, and coherent states
�34,33��, its high-energy properties have only been very re-
cently investigated numerically �35–37� and several interest-
ing features have been revealed. More precisely, for special
values of the energy, the spectrum has been shown to display
singularities which are reminiscent of the critical point re-
sponsible for the well-known quantum phase transition at
zero temperature.

In a recent Letter �38�, we proposed a theoretical frame-
work which allows for an exact computation, in the thermo-
dynamic limit, of the LMG model spectrum for the whole
range of parameters and leads to a precise description and
understanding of these so-called exceptional points. The

present paper is an extension of that work, in which we will
detail some of its main results and extend the analysis along
several directions �relation to the semiclassical treatment,
first-order finite-size corrections, and expectation values of
observables�.

The paper is organized as follows. In Sec. II, we introduce
the LMG model and the spin-coherent-state formalism �39�,
which is the key ingredient of our approach. We then derive
the classical energy surface �37�, whose extrema lead to a
qualitative phase diagram; these extrema are related to the
density-of-states singularities. In a second step, most impor-
tantly, we analyze this phase diagram quantitatively. In Sec.
III, we introduce the Majorana polynomial and map the time-
independent Schrödinger equation onto a first-order nonlin-
ear �Riccatti-like� differential equation. In Sec. IV, we give
solutions of this equation in the thermodynamic limit. This
leads to simple expressions of the density of states in the
whole phase diagram. In Sec. V, we go beyond this limit and
compute the leading finite-size corrections to the density of
states. Finally, in Sec. VI, we compute the expectation values
�throughout the spectrum� of some spin observables, paying
particular attention to one region for which spectral subtle-
ties prevent us from using the Hellmann-Feynman theorem.
Some technical details are given in the Appendix.

II. COHERENT-STATE REPRESENTATION
AND CLASSICAL ENERGY SURFACE

A. Lipkin-Meshkov-Glick model

The LMG model describes a set of N spin-1
2 particles

mutually interacting through an �anistropic� XY-like Hamil-
tonian and coupled to an external transverse magnetic field h.
The Hamiltonian of this system can be expressed in terms of
the total spin operators S�=�i=1

N ��
i /2 where the ��’s are the

Pauli matrices:

H = −
1

N
��xSx

2 + �ySy
2� − hSz. �1�
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In the following, for simplicity, we only consider the
maximum spin sector s=N /2 with N even. Given the sym-
metry of the spectrum of H, we focus on the parameter range
h�0; ��y���x. Note also that �H ,S2�=0 and �H ,ei��Sz−s��
=0 �spin-flip symmetry�. In the standard eigenbasis ��s ,m�	
of S2 and Sz, this latter symmetry implies that odd- and
even-m states decouple. In the thermodynamic limit, both
subspaces are isospectral so that we further limit the follow-
ing analysis to the �s+1�-dimensional sector with m even. It
is known that H exhibits a quantum phase transition for h
=�x or h=�y.

B. Coherent-state representation of the spin operators

To determine the spectrum of the Hamiltonian H, it is
convenient to use a spin-coherent-state representation �39�.
Let us denote by ��s ,m�	 the standard eigenbasis of �S2 ,Sz	
with eigenvalues s�s+1� and m, respectively. The unnormal-
ized spin coherent state ��� is then defined as

��� = e�̄S+�s,− s� . �2�

The scalar product of two such states is


����� = �1 + �̄���2s, �3�

where �̄ is the complex conjugate of �. These coherent states
obey the following closure relation:

� d�̄ d�

�

�2s + 1�
�1 + �̄��2

���
��

����

= 1, �4�

where �d�̄ d�=�dRe��� d Im���. In this representation, a
quantum state ����= 
� ��� is a polynomial in � and the
action of the spin operators on � translates into differential
operators:

S+ = 2s� − �2��, �5�

S− = ��, �6�

Sz = − s + ���, �7�

where S	=Sx	 iSy. We shall discuss below the representa-
tion of ���� in terms of its zeros �the Majorana representa-
tion�.

C. Classical energy surface

In the thermodynamic limit, a variational description of
the ground state �1,30,31�, built with respect to the ��� states,
leads to the dominant behavior of the model and, in particu-
lar, the location of the quantum phase transition. The latter
can obtained from an analysis of the minima of the varia-
tional energy H0:

H0��̄,�� = lim
s→


1

s


��H���

����

, �8�

=
2�1 − �2�̄2�h − �� + �̄�2�x + �� − �̄�2�y

2�1 + ��̄�2 . �9�

Note that, in this limit, a classical spin description is
valid, such that the correspondence between a state ��� and a
classical vector is simply obtained via a stereographic map
from the complex plane onto the S2 sphere �with �
=ei� tan�� /2��, leading to the parametrization

S =
N

2
�sin � cos �,sin � sin �,cos �� . �10�

Here we shall first be interested in the geometrical prop-
erties of the whole classical energy surface H0��̄ ,��. Its ex-
trema, obtained by imposing ��̄H0=��H0=0, are given in
Table I together with the corresponding energy. When one
further imposes that � and �̄ be complex conjugate, the con-
figuration space �spanned by the Hamiltonian parameters� is
split into distinct regions characterized by the number of
extrema and saddle points in H0��̄ ,��.

This phase diagram coincides with that derived from the
analysis of density-of-states singularities, as done in the next
section. We shall describe below how far the classical analy-
sis can help in understanding the spectral results. Note that a
related analysis of the classical energy surface, including
comparisons to numerically derived spectra, has already
been proposed by Castaños et al. �37� in terms of the �� ,��
angles instead of the present ��̄ ,��.

D. Classical description of the phase diagram

The zero-temperature phase diagram of the LMG model is
usually discussed in terms of its ground-state properties. In
this case, only two phases are distinguished �1,24,31�. For
h�x �symmetric phase�, the ground state is unique and

TABLE I. Extrema of the energy surface H0.

� �̄
H0

0 0 h

− − h − �x

h − �x
�1/2

− − h − �x

h − �x
�1/2

−
h2 + �x

2

2�x

− h − �x

h − �x
�1/2 − h − �x

h − �x
�1/2

−
h2 + �x

2

2�x

− h + �y

h − �y
�1/2 h + �y

h − �y
�1/2

−
h2 + �y

2

2�y

h + �y

h − �y
�1/2

− h + �y

h − �y
�1/2

−
h2 + �y

2

2�y


 
 − h
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lims→

Sz� /s=1, whereas for h��x �broken phase�, the
ground state is twofold degenerate and lims→

Sz� /s=h /�x.
Note that the degeneracy in the broken phase arises only in
the thermodynamic limit, where the gap between the ground
and first excited states vanishes exponentially with s. The
quantum phase transition at h=�x is of second order and
characterized by mean-field critical exponents �31� as well as
nontrivial finite-size scaling behavior �23–25�.

We have shown �38� that, when considering the full spec-
trum, four different zones arise instead of two, corresponding
to a splitting of the broken phase region into three distinct
parts characterized by different singularities in the density of
states �see Fig. 1�.

Note that such singularities have already been pointed out
in the numerical study of the special case �x=−�y �35,36�
and were called “exceptional points.” We emphasize in the
present study that these exceptional points are associated
with saddle points of the energy surface. Of course, the ab-
solute minimum �maximum� gives the lower �upper� bound
of the spectrum. Note that these bounds may be degenerate.

In the thermodynamic limit, to a given energy in the spec-
trum corresponds a level set on H0��̄ ,��. At that energy, the
Husimi function local maxima �defined in the next section�
are known to concentrate along this level set, which forms
the classical orbit. Singularities of the surface �maxima,
minima, or saddle points� translate into singularities of the
level sets �a main ingredient in Morse surface theory�. This,
in turn, affects the density-of-states computation, as illus-
trated in the next section, and explains why the singularities
in the H0��̄ ,�� surface and in the density of states are in
close correspondence.

As an illustration, we display in Fig. 2 the classical energy
surface for ��x=5, �y =3, h=−1�, which is precisely the point
of zone IV whose density of states is shown in Fig. 1. As can

be seen, the density of states contains two different types of
singular points, being the locus of either a divergence or
discontinuity. The analysis of the classical energy surface
allows one to qualitatively understand all these features. In-
deed, it contains two absolute minima �denoted m�, which
provide the lower bound of the spectrum �twofold-
degenerate ground-state energy�; two saddle points �denoted
s� corresponding to the singular behavior of density of states;
one local maximum �noted M�, which is associated with the
discontinuity, and one absolute maximum, not shown here,
giving the upper bound of the spectrum.

The same geometrical analysis can be performed through-
out the configuration space. A typical classical surface in
zone I displays one minimum and one maximum, which,
respectively, signal the lower and upper edges of the spec-
trum. A zone-II surface has two absolute minima �corre-
sponding to the broken-phase degenerate ground states�, a
saddle point �corresponding to the density-of-states singular-
ity�, and one maximum �the upper spectrum edge�. Finally, a
generic zone-III surface has �again� two absolute minima,
two saddle points �corresponding to the two singularities in
the spectrum, arising at different energies�, and two absolute
maxima �corresponding to a degenerate upper state�. Note
that, when displayed on the sphere, one recovers the standard
result for surfaces singularities, which states that the number
of maxima plus the number of minima minus the number of
saddle points equals the genus of the sphere—i.e., 2.

Thus, the analysis of the classical energy surface allows
us to qualitatively describe the phase diagram shown in Fig.
1. However, it does not give any quantitative information
concerning the density of states. The aim of what follows is
to develop a reliable method to exactly compute the full
spectrum of the LMG model.

FIG. 1. �Color online� Phase diagram in the ��x ,�y� plane at fixed h0 and typical density of states for ��x ,�y ,h� equal to �I� �1 /2, 1 /3,
1�, �II� �2, 1 /2, 1�, �III� �5, −3, 1�, and �IV� �5, 3, 1�.

EXACT SPECTRUM OF THE LIPKIN-MESHKOV-GLICK … PHYSICAL REVIEW E 78, 021106 �2008�

021106-3



III. MAJORANA REPRESENTATION AND SPECTRUM

A. Majorana polynomial and Majorana sphere

The first step consists in analyzing the eigenstates in the
spin-coherent-state formalism. Any ��� can be represented
by its Majorana polynomial �40� defined as

���� = 
���� �11�

= �
m=−s

s � �2s�!
�s − m�!�m + s�!


s,m����m+s �12�

=C�
k=1

d

�� − �k� , �13�

where d�2s is the degree of this polynomial in � �d=2s for
a generic state�. The roots �k of ���� fully characterize the
normalized quantum state ��� up to a global phase.

It may be more convenient to represent such a state ���
on the so-called Majorana sphere, which can be seen as a
generalization of the celebrated Bloch sphere used for spin-1

2
states. To do so, one first complements the d roots ���� with
2s−d roots at infinity in the complex plane. Next, the result-
ing set of 2s complex numbers �k is mapped onto 2s points
on the unit sphere by an inverse stereographic map. For in-
stance, the basis states �s ,m� are represented by s−m points

on the north pole and s+m points on the south pole. Less
trivial examples can be found in Fig. 3 for eigenstates of H in
the zone III.

Let us also introduce G���, the logarithmic derivative of
����:

G��� =
1

2s
�� ln ���� =

1

2s
�
k=1

2s
1

� − �k
. �14�

The 1 /2s factor is here to ensure that G is well behaved at
the �infinite-s� thermodynamic limit. Let us also define the
Husimi function associated with a general state ����,

W���̄,�� =

����
����


����
�15�

=exp�2s��

G����d��

+ ��̄

Ḡ��̄�d�̄ − ln�1 + �̄���� .

�16�

We shall further need to locate the Husimi function extrema,
which are easily found to satisfy

FIG. 2. �Color online� Typical classical-energy surface in zone IV ��x=5, �y =3, h=−1�, containing several critical points: two minimal
points �m�; two saddle points �S�; one local maximum �M�. It also contains a global maximum, outside the range of this plot. The level
curves of H0 �classical trajectories� are plotted in blue.
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G��� =
�̄

1 + �̄�
. �17�

As explained above, for the Hamiltonian eigenstates, these
maxima converge at the thermodynamic limit, toward the
semiclassical orbits, which are the level sets of the classical
energy surface H0.

B. From Schrödinger to Riccati

Let us now write the time-independent Schrödinger equa-
tion H���=E ��� in the coherent-state representation. Using
relations �5�, �6�, and �7�, one transforms the Schrödinger
equation into the linear differential equation

�P2���
�2s�2 ��

2 +
P1���

2s
�� + P0�������� = ����� , �18�

where �=E /s and

P0��� =
1

4s
��2�2s − 1���y − �x� − �x − �y� + h , �19�

P1��� = ��2s − 1

2s
��2��x − �y� − �x − �y� − 2h� , �20�

P2��� = −
1

2
���2 − 1�2�x − ��2 + 1�2�y� . �21�

The next step consists in converting the linear second-order
differential equation �18� for � into a nonlinear first-order
differential equation for its logarithmic derivative G���,
which satisfies the following Riccati-like equation

P2����G����
2s

+ G2���� + P1���G��� + P0��� = � .

�22�

C. Density of states and poles of G

The density of states is then obtained from the analysis of
the poles of the function G. To illustrate the poles’ location,
several typical states are displayed in Fig. 3 on the Majorana
sphere. Each dot represents one pole of G—i.e., one Majo-
rana zero �k—which is mapped from the complex plane to
the sphere by an inverse stereographic projection.

The cornerstone of this study is that, for the LMG model,
the �k’s spread over two curves C0 and C1 in the complex
plane. In addition, the nth excited state of H has 2n poles on
C1 and 2�s−n� on C0 �thus defining both curves�. This re-
markable property stems mainly from existing maps �which
may differ between parameter space regions� between the
LMG model and the problem of a particle in an effective

FIG. 3. �Color online� Upper part: representation of the poles of G on the Majorana sphere �blue dots� for three typical eigenstates
computed for h=1, �x=5, �y =−3, and s=20 �zone III in Fig. 1�. Black lines correspond to the G0 branch cuts C0 and C1; orange lines
correspond to the classical orbits. Lower part: numerical �black dots s=20� versus analytical �red line s=
� integrated density of states. The
two crosses indicate the singularities of the density of states N0

III�−h� and N0
III�h� �Eqs. �39� and �44�, respectively� in the thermodynamic

limit.
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one-dimensional potential �see the Appendix�. In the latter
case, the oscillation theorem indexes the excited states by the
number of wave-function nodes on the real axis. This leads
here to �at least one set of� zeros lying on simple lines in the
complex plane, where the pole density varies monotonously
with energy.

Let us consider the normalized integrated density of
states, N���� �0,1�. We shall enumerate by n the eigenstates
of increasing energy, starting from n=0 for the ground state
to n=s for the highest-energy state. The special location of
the G poles leads to a simple relation between N��� and p,
the number of poles lying in C1, which reads

N��� =
n + 1

s + 1
=

1

s + 1
1 +

p

2
� �23�

=
1

s + 1�1 +
s

2i�
�

C̃1

G���d�� , �24�

where C̃1 is a contour that surrounds C1 and oriented such
that N�0. For the sake of simplicity, we shall further con-
sider the density of poles in C1, called I� �0,1�, which sim-
ply reads

I��� =
p

2s
=

1

2i�
�

C̃1

G���d� . �25�

In general, Eqs. �25� and �22� cannot be exactly solved for
arbitrary s. The main goal of this paper is to solve these in
the thermodynamic limit �s→
� and to capture the leading
finite-size corrections in a 1 /s expansion.

IV. THERMODYNAMIC LIMIT

A. Leading-order expansion for G

Let us assume that G and � can be expanded in the form

G = �
i�N

Gi

si , � = �
i�N

�i

si . �26�

At leading order �1 /s�0, Eq. �22� becomes a second-order
polynomial equation for G0 whose solutions are

G0
	��� =

���2��y − �x� + �x + �y + 2h� 	 �2Q���
2P2���

,

�27�

where

Q��� = ���2 − r−
2���2 − r+

2� , �28�

� = − ��x − �y��h + �0� , �29�

r	 = �− ��−1/2�h2 + �x�y + ��x + �y��0 	 A , �30�

A = ��h2 + �x
2 + 2�x�0��h2 + �y

2 + 2�y�0� . �31�

The four roots of Q, 	r	, are branch points of G0. The
integrated density of states in the thermodynamic limit,
N0��0�, now reads

N0��0� = lim
s→


N��� = lim
s→


I��� = I0��0� �32�

=
1

2i�
�

C1

d��G0
+��� − G0

−���� . �33�

A natural choice for the G0 branch cuts is given by the
curves C0 and C1, on which the G poles accumulate as s
increases. It indeed corresponds to the direction, in the com-
plex plane, for which the quantity computed in Eq. �32� is
real at each �infinitesimal� step of the integration. This latter
condition was in fact implemented to draw the curves C0 and
C1 in the different figures.

In the next section, we analyze in detail the four above-
mentioned different regions in the phase diagram, in terms of
N0��0�, its derivative, and the density of states �0��0�
=��0

N0��0�. These quantities are, in most cases, computed as
indicated in Eq. �32�. It may happen, as noted below, that the
C1 curve has a complex shape, while C0 is simple. Since the
integral over all branch cuts, corresponding to C0 and to C1,
sums to unity, we can safely consider the integral over C0,
instead of the nontrivial one over C1, and write N0��0� as one
minus this integral. We also face the case of state degenera-
cies, with corresponding symmetric or nonsymmetric classi-
cal orbits. Each such orbit is considered separately by impos-
ing the analyticity of G0 in the region containing this orbit,
bounded eventually by a closed branch cut on the sphere.
The related ���� is zero along this line and can be consid-
ered as vanishing outside the considered region. This corre-
sponds quite well to the �numerically derived� eigenstate in
the nonsymmetric case. However, in the symmetric case this
description fails to reproduce the exact eigenstates since the
latter is generically a linear combination of states located
close to the classical orbits.

B. Analytical expressions of the densities of states

A precise study of the branch cuts C0 and C1 allows one to
distinguish between five different forms of the density of
states �labeled �a�, �b�, �c�, �d�, and �e� below� that can be
expressed in terms of a complete elliptic integral of the first
kind,

K�m� = �
0

�/2

�1 − m sin2 ��−1/2d� , �34�

an incomplete elliptic integral of the third kind,

��n,��m� = �
0

�

�1 − n sin2 ��−1�1 − m sin2 ��−1/2d� ,

�35�

and a complete elliptic integral of the third kind, ��n �m�
=��n ,� /2 �m�.

Depending on the Hamiltonian parameters, we have al-
ready distinguished between four different zones, following
the classical surface singularities. We will now show how
these zones are characterized in terms of the density-of-states
behavior. Indeed, each time a classical surface singularity
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�maximum, minimum, or saddle point� is crossed, the level
sets �classical orbits or Husimi function local maxima� expe-
rience topological changes, as well as the integration con-
tours, leading to a new expression for the integrated density
of states. We now detail these different expressions, by de-
scribing each zone.

Zone I: ��y � ��x�h. Within this range of parameters
�which coincides to the “symmetric phase” discussed in Sec.
II D� the spectrum lies in the interval −h��0�h and the
density of states is a smooth decreasing function of the en-
ergy as can be seen in Fig. 1. The distribution of Majorana
polynomial roots in this zone is similar to that displayed in
Fig. 3�b�. In the complex plane, C0 and C1 lie in the imagi-
nary and real axes, respectively. The integrated density of
states is given by

N0
�b���0� = 1 +

�2

�r+
�− ��x�y

�a−
2��r−

2�
r−

2

r+
2� − a+

2� r−
2

�
�
r−

2

r+
2�

+ 2��x�y�h + �0�K r−
2

r+
2�� , �36�

with

a	 = h 	 ��x�y, � =
��x − ��y

��x + ��y

. �37�

Zone II: ��y��h��x. In this region, one must distinguish
between two cases.

�a� −
h2+�x

2

2�x
��0�−h. C0 coincides with the whole imagi-

nary axis while C1 is made of two disconnected segments in
the real axis as depicted in Fig. 3�a�. Here, the integrated
density of states reads

N0
�a���0� = 1 +

��r+
2

�r−
�2�x�y

��1 − � r+
2

�
�1 −

r+
2

r−
2�1 −

r−
2

�
�

− �1 − �r+
2�1 −

r+
2

r−
2��1 − �r−

2�� . �38�

�b� −h��0�h. C0 and C1 are the same as in zone I and
the analytic expression of the density of states is given by
Eq. �36�.

These two branches �a� and �b� of the density of states
diverge at �0=−h. Indeed, the integrated density of states can
be simplified into the form

N0
II�− h� = 1 +

2

���x�y
�a− tan−1� a−

b+�h��
− a+ tan−1� a+

b0�h��� , �39�

with

b	�h� = 	 ��h�x − �h�y� + ���x − h��h − �y� , �40�

b0�h� = �h�x + �h�y + ���x − h��h − �y� , �41�

and one can check that �0
II�−h�=��0

N0
II��0��−h diverges. One

can further extract the leading behavior of the density of
states near this point to obtain

lim
�0→−h

�0
II��0� = −

ln��0 + h�

2����x − h��h − �y�
. �42�

Zone III: h�−�y ��x. In this region, one must distinguish
between three cases.

�a� −
h2+�x

2

2�x
��0�−h. C0 and C1 are the same as in II�a�,

and the integrated density of states is given by Eq. �38�.
�b� −h��0�h. C0 and C1 are the same as in I, and the

density of states N0
�b���0� is given in Eq. �36�.

�c� h��0�−
h2+�y

2

2�y
. C0 is made of two disconnected seg-

ments on the imaginary axis while C1 coincides with the
whole real axis as depicted on the Majorana sphere in Fig.
3�c�. The integrated density of states simply reads

N0
�c���0� = 1 − N0

�a���0� , �43�

where N0
�a� is given in Eq. �38�.

In this zone III, the density of states has two singularities
at �0= 	h. The integrated density of states for these energies
is given by N0

III�−h�=N0
II�−h� �see Eq. �39�� and

N0
III�h� =

2

���x�y
�a+ tan−1 a+

b0�− h�
− a− tan−1 a−

b−�− h�� .

�44�

As done in zone II, one can compute the leading behavior
of the density of states near these points and one gets

lim
�0→+h

�0
III��0� = −

ln��0 − h�

2��− ��x + h��h + �y�
. �45�

For �x=−�y, the spectrum is symmetric with respect to
�0=0 and the above expression gives the exact location, in
the thermodynamic limit, of the so-called exceptional point
observed in Refs. �35,36� where a more complex diverging
behavior was conjectured.

Zone IV: h��y ��x. In this zone the density of states
presents three different regions, of type d, e, and b. The
curve C1 is more complex here, while C0 always lies on a
straight line in the complex plane. This is why we choose to
integrate around C0 instead of C1.

�d� −
h2+�x

2

2�x
��0�−

h2+�y
2

2�y
. C0 coincides with the whole

imaginary axis while C1 has two disconnected branches lying
symmetrically on the unit circle with respect to the imagi-
nary axes. We are here facing a case where the classical
orbits are related by symmetry �see Fig. 4�d��. One finds, for
this region,
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N0
�d���0� = 1 +

2�2r−

��r− − r+��− �x�y�h + �0�

�� a−
2

u�− r−�u�r−�
E�r−,y�

−
a+

2

r−
2u−

1

r−
�u 1

r−
�E 1

r−
,− y�� , �46�

with

E�r−,y� = ��−
u�− r−�
yu�r−�

,sin−1 �− y�
1

y2�
− ��−

u�− r−�
yu�r−�

,sin−1 �y�
1

y2�
− ��−

u�r−�
yu�− r−�

,sin−1 �− y�
1

y2�
+ ��−

u�r−�
yu�− r−�

,sin−1 �y�
1

y2� , �47�

where

y =
r− − r+

r− + r+
, �48�

u�r−� = ���x − ��yr− + ���x + ��y . �49�

�e� −
h2+�y

2

2�y
��0�−h. This region shows two disconnected

classical trajectories not related by symmetry �see Fig. 4�,

corresponding to two qualitatively different kinds of states
which alternate in the spectrum. C0 comprises two discon-
nected components lying in the imaginary axis, while C1 is
still complex and, moreover, is different for the two kinds of
states. One finds

N0
�e���0� = 1 +

�2

�r+
�− ��x�y

�− 4�0
��x�yK r−

2

r+
2�

+ a−
2�� 1

�r+
2 �

r−
2

r+
2� − ��r−

2�
r−

2

r+
2��

+ a+
2�� r−

2

�
�
r−

2

r+
2� − � �

r+
2 �

r−
2

r+
2��� . �50�

For the critical energy, at the boundary between IV�d� and
IV�e�, the integrated density of states simplifies to

N0
IV−

h2 + �y
2

2�y
� = 1 +

1

���x�y

�a−c�− h� − a+c�h�� ,

�51�

with

c�h� = tan−1� h��x + �y
3/2

���x − �y���y
2 − h2�

� , �52�

N0
IV�− h� = 1 −

h
��x�y

. �53�

In addition, the density-of-states singular behavior is not
symmetrical and reads

lim
�0→�− �h2 + �y

2�/2�y�−
�0

�e� = −

ln��0 +
h2 + �y

2

2�y
���y

����x − �y���y
2 − h2�

�54�

=2 lim
�0→�− �h2 + �y

2�/2�y�+
�0

�d�. �55�

�b� −h��0�h. C0 is simply connected and lies on the
imaginary axes. Like in the previous case, C1 is nontrivial
�see Fig. 4�. Nevertheless, the expression found for N0 in
this region coincides with that given by Eq. �36�.

We now discuss the particular features found in the spec-
tral region IV�e�. At �0=−h, the density of states is discon-
tinuous �see Fig. 1�, a fact which can be understood already
from the topological analysis of the classical surface H0. In-
deed, the transition from zone �e� to zone �b� corresponds to
leaving a local maximum of H0 �see Fig. 2�; therefore, a
family of classical orbits no longer contributes to the density
of states.

In addition, as opposed to all other regions, the energy
difference between two consecutive levels, ��i�=E�i+1�−E�i�,
computed for increasing s, does not converge towards the
analytical result and, actually, does not converge at all. In
region IV�e�, ��i� spreads over two branches ��� and ���,
depending on the parity of the i, which oscillate without
converging as s increases, as can be seen in Fig. 5. In this
case, the gap we compute, in the thermodynamic limit, is

FIG. 4. �Color online� Roots of the Majorana polynomial �blue
dots� ��x=10, �y =5, h=1, and s=40�, classical orbits �orange
curves�, C0 and C1 �black curves�, for eigenstates �labeled by n� in
zone IV�d� �n=15�, zone IV�e� ��e−�, n=25; �e+�, n=26�, and zone
IV�b� �n=35�. In zone IV�e� two kinds of states coexist, of type �e−�
and �e+�, associated with the two classical orbits nonrelated by sym-
metry that alternate in the spectrum.
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actually the average gap—namely, �0��0�
= 1

2 ���+���0�+��−���0��. This is clearly to be understood in
relation to the existence of two kinds of states alternating in
the spectrum. Indeed, when analyzed separately within each
set of states �e+ or e−�, the computed energy gaps �between
levels j and j+2 in the energy spectrum� converge as s→
.
In addition, both such gaps converge to twice the value of
�0��0� �otherwise the two kind of states would not alternate
as observed numerically�. The oscillatory behavior noted in
Fig. 5 signals an energy drift �with s� of one set of energy
levels with respect to the other.

V. FINITE-SIZE CORRECTIONS

In the previous section, we have analyzed the thermody-
namic limit of the LMG model spectrum by considering the
leading terms in the expansion �26� �order �1 /s�0�. We now
express the next-order corrections, which have already been
shown, at least for the ground state, to display nontrivial
scaling properties �23–25,31�. For the sake of simplicity, we
limit the present analysis to the case �x=1 and �y =0.

A. First-order expansion for G

Identifying terms of order 1 /s in Eq. �22�, one obtains the
following form for the first-order term of G:

G1
	��� = Ĝ1��� + G̃1

	��� , �56�

with

Ĝ1��� =
h��h��2 + 1� − �2 + 1�

2�1 − �2�Q���
, �57�

G̃1
	��� = 	

h��2 + 1� + 2��2 − 1��1

2��2 − 1��2Q���
. �58�

Ĝ1 is thus an analytic function of � with poles at 	r− and

	r+ while G̃1 has the same branch cuts as G0. I��� reads,

recalling Eq. �25� and developing up to first order,

I��� =
1

2i�
�

C̃1

G0���d� +
1

s

1

2i�
�

C̃1

G1���d� �59�

=I0��� +
1

s
I1��� , �60�

where I0��� is given in Eq. �32� and where one can rewrite

I1��� =
1

4
+

1

2i�
�

C1

d��G̃1
+��� − G̃1

−���� , �61�

the 1
4 coming from the integration over the poles.

For �x=1, �y =0, one has only zones I and II to consider,
which focuses the analysis on only two energy regions. In
zones I and II�b� one obtains

I1
�b���� =

1

4
+

�h + 2�1�K r−
2

r+
2� − 2h�r−

2�
r−

2

r+
2�

�r+
�− �

, �62�

whereas in region II�a� one finds

I1
�a���� =

1

���
� 2h

r−�r+
2 − 1��K1 −

r+
2

r−
2�

− r+
2�1 − r+

2�1 −
r+

2

r−
2�� +

h + 2�1

r+
K1 −

r−
2

r+
2�� .

�63�

Now, for all s, we expect that I���=I0��0�, which im-
plies, at order 1 /s, I1��−�1 /s�=I1��0�=0. This condition
allows one to compute the first-order correction to the en-
ergy, �1, which is displayed in Fig. 6 �lower left� and com-
pares nicely with the numerical values, already for small
values of s �here s=50�.

FIG. 5. �Color online� Gap between two consecutive levels as a
function of the energy in region IV for �x=15, �y =10, and h=1. In
the central region, one sees a real lack of convergence toward the
red line when increasing s, which is the average gap as computed in
the thermodynamic limit.

FIG. 6. �Color online� Comparison between analytical �red line�
and numerical �s=50 black dots� results for the �zeroth-order� inte-
grated density of states N0 �upper left� and energy gap �0 �upper
right� and the first-order finite-size corrections to the energy �1 and
to the gap ��1, lower right�.
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B. Energy gaps

The gap between two successive levels has already been
discussed above in the zone-IV case. At the thermodynamic
limit, it generically reads

�0��0� =
1

�0���
=

��0

�N0��0�
. �64�

With the analysis done in the previous section, we can
now compute finite-size corrections to the gap. To first order,
we obtain

� = �0 +
1

s
�1 = �01 +

1

s

��1

��0
� . �65�

The above derived values of �1 allow us to get a closed
form for �1, which nicely compares to the numerical values,
as can be seen in Fig. 6 �lower right� for s=50.

The �1 correction is singular at the exceptional points,
which are, as discussed in Sec. IV, located at �0=−h. Note
that Leyvraz and Heiss numerically found a logarithmic sin-
gularity at the exceptional points �25�. A related feature was
already observed for the gap between the ground state and
the first excited state �23,24�. In the latter case, a scaling
hypothesis led to a derivation of the first-order correction,
showing a N−1/3 behavior. Unfortunately, the scaling hypoth-
esis cannot be used here at the exceptional points. We have
determined the behavior of the gap in their vicinity; setting
�= �h+�0�, one gets

���0 → − h+� = −
2���1 − h�h

ln �
�1 −

1

s
� 1

4�h − 1�

+
��1 − h�h sin−1�1 − 2h�

� ln2 �
�� , �66�

���0 → − h−� = −
2���1 − h�h

ln �
�1 −

1

s

2��1 − h�h sin−1 �h

� ln2 �
� .

�67�

Note that the leading term is simply the inverse of �0, which
is given in Eq. �42� and vanishes when � goes to zero.

VI. OBSERVABLE EXPECTATION VALUES

In this section, we discuss the expectation values of spin
observables for generic eigenstates of the LMG model. The
simplest way to perform such a calculation is to use the
Hellmann-Feynman theorem, which relates these expectation
values to the partial derivative of the eigenenergies with re-
spect to Hamiltonian parameters. For instance,


��Sz��� = − �hE, 
��Sx
2��� = − 2s��x

E . �68�

As an illustration, we compare in Figs. 7 and 8 three
cases, computed numerically �at finite s� and via the
Hellmann-Feynman theorem in the thermodynamic limit—
i.e., replacing E by s�0. As expected, one can see an almost
perfect agreement, except for zone IV�e� discussed below.

Let us still make use of the semiclassical analysis dis-

cussed in previous sections. The expectation value 
��Ô���

for an observable Ô reads �41�, at leading order,


Ô� =

��Ô���

����

=
1

T
�

0

T

dt
��t��Ô���t�� , �69�

where T is the period of the classical orbit with energy �0 and
��t� the solution of the classical dynamics equation �42�.

Let us focus on the 
Sz� case. In zone I, it is maximal for
the ground state. Indeed, in that region, H0 is minimum for
�=0, where the classical orbit degenerates to a single point
at which the ground-state amplitude ������2 is concentrated.
As a result, although this true ground state differs from the
simple fully polarized state �21�, 
Sz� reaches its maximum
value s.

This also occurs, in regions II and III, for energies corre-
sponding to the exceptional points. Here, classical orbits dis-
play a characteristic “figure-8” shape, with the values of �
therefore differing from zero. The saturation effect results in
that case from the fact that the period of the orbit diverges,
with a vanishingly small classical velocity near �=0, forcing
the expression in Eq. �69� to saturate. In all cases except
zone IV�e�, this latter computation leads to the same result as
that simply obtained from the Hellmann-Feynman theorem.

FIG. 7. �Color online� Comparison of expectation values of sev-
eral observables obtained from numerical diagonalizations �black
dots� and from the Hellmann-Feynman theorem in the thermody-
namic limit �red lines�. Plot parameters: s=60, zone I ��x=1 /2,
�y =1 /3, h=1�, zone II ��x=2, �y =1 /2, h=1�, and zone III ��x=5,
�y =−3, h=1�.

FIG. 8. �Color online� Same as Fig. 7, for a typical point in zone
IV ��x=5, �y =3, h=1� and s=60. In the central region �zone IV�e��,
there is a clear discrepancy between the numerical values �black
dots� and those derived from the Hellmann-Feynman theorem �red
lines�.
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In zone IV�e�, the numerically computed expectation val-
ues alternate along two distinct curves, differing from the
Hellmann-Feynman result. This corresponds to the already
discussed existence, for the same energy �0, of two kinds of
classical trajectories nonrelated by symmetry �see Fig. 4�.
For each numerically derived eigenstate, the associated
������2 concentrates alternatively near one of the two clas-
sical orbits. Integrating separately along each orbit precisely
gives the two branches that are observed numerically �Fig.
8�, while the Hellmann-Feynman computation leads to an
averaged value.

VII. CONCLUSION

We have studied in detail the full spectrum of the Lipkin-
Meshkov-Glick model by means of a coherent-states formal-
ism. In a first step, we simply determined the main charac-
teristics of the �zero-temperature� phase diagram by
analyzing extrema and saddle points of the classical energy
surface. This leads us to distinguish between four zones in
the phase diagram corresponding to various patterns of the
density of states whereas the usual ground-state criterion
leads to only two distinct phases.

In a second step, we analyzed more deeply the nature of
the eigenstates in terms of their associated Majorana polyno-
mial roots. This enabled us to exactly compute the integrated
density of states in the thermodynamic limit as well as the
first finite-size corrections. This remarkable result mainly
stems from the fact that the roots of the Majorana polyno-
mial lies on well-defined curves, where their density varies
monotonously with the energy. We also clarified the nature of
the so-called “exceptional” points in the spectrum.

Finally, we addressed the question of computing generic
observable expectation values, in particular when, owing to
subtle spectral reasons, the Hellmann-Feynman theorem can-
not be used.

In principle, the same type of analysis could be performed
for any spin Hamiltonian expressed in terms of single-spin
operators �so-called “collective models”�. Preliminary inves-
tigations of such models with cubic or quartic interactions
are currently under study. Another perspective, also presently
under investigation, concerns the dynamical properties for
evolutions under both fixed and variable Hamiltonian param-
eters.
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APPENDIX: MAPPING THE LMG MODEL
ONTO AN EQUIVALENT ONE-DIMENSIONAL

MODEL

The density-of-states calculation given in this paper relies
on the fact that the roots of the Majorana polynomial lie on
well-defined curves in the complex plane. This result stems
from the well-known wave-function node oscillation theo-
rem for one-dimensional systems, which arise here via a
mapping of the LMG model onto the problem of a particle in
a one-dimensional potential �see �6� for a review�, which we
summarize here. A one-to-one relation exists between the
energy spectrum of the spin system and the low-lying quan-
tum states of such a particle.

We aim to rewrite the equation for the eigenstate ���� as
a Schrödinger equation for a particle moving in a one-
dimensional potential. The procedure consists in three steps,
given first for the case �y �0.

�i� We change H into an equivalent form such that the
roots of the Majorana polynomials �nodes of the wave func-
tion� which are aligned on the C1 curve are sent onto the unit
circle. This is achieved through the following unitary trans-

formation: H̃=ei��/2�SxHe−i��/2�Sx.
�ii� The unit circle being parametrized by an angle �, we

write ����=e−is���ei�� for �� �0,2��.
�iii� Finally, we define a new function ��x�, which satis-

fies a one-dimensional Schrödinger equation and such that
part of its spectrum is put in one-to-one correspondence with
the original spin spectrum. This is achieved by setting
����=ef�x������x����, where f�x� and x��� are chosen to sup-
press the first-order derivative in the initial equation �18� for
���� and to set the “mass” term equal to s. The resulting
Schrödinger-like equation for ��x�, describing a particle in a
one-dimensional periodic potential, reads

−
1

2s
�x

2��x� + V�x���x� = E��x� . �A1�

Following this procedure, one obtains the effective potential

FIG. 9. �Color online� Effective one-dimensional potential in the thermodynamic limit V
�x�=lims→

V�x�

s for �y �0 and h=1. Blue and
red lines are, respectively, the lower and upper bounds of the spin system spectrum �0= E

s .
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V�x� =
1

2�y − 2�xsn�B��x/�y�2 �h�2s + 1���x − �y�sn�B��x/�y�

− �h2s + �s + 1��x�y�cn�B��x/�y�2	 , �A2�

with

B = �− �yx + K�x

�y
� . �A3�

Note that V is periodic with period L= 4
�−�y

K�
�x

�y
�.

The mapping onto a one-dimensional potential and the
celebrated node oscillation theorem allows one to sort the
eigenstates of increasing energy according to their number of
nodes. Clearly, a ��x� node leads to a ���� node for the
corresponding LMG eigenstate. The first �2s+1� eigenstates

of this Hamiltonian H̃ correspond to the eigenstates of the
LMG Hamiltonian with the same energy. Note that, since we
focus in this paper on the �s+1�-dimensional “even-m” sec-
tor, this leads eventually to a node number inceasing by steps
of 2 for each new eigenstate.

Typical potentials are shown in Fig. 9, with parameters
associated with regions I, II, and III of the LMG phase dia-
gram. The LMG spectrum corresponds to the energies lying
between the lower �blue� and the upper �red� lines. The
qualitative differences between the three regions appear
clearly here. Indeed, in region I the particle moves in a
single-well potential whereas it is in a double-well potential

in region II. In region III, a higher “allowed” energy region
appears, with the extended �unbounded� states above the po-
tential barrier. Crossing the latter corresponds to the upper
density-of-states singularity discussed in the text. Note, how-
ever, that the extended or bounded nature of the eigenstates
for this equivalent one-dimensional system does not have a
direct translation into the nature of the corresponding eigen-
states in the LMG problem.

Similar transformations can be achieved for positive �y,
but in this case, one must consider H̃=−ei��/2�SyHe−i��/2�Sy.
Note the occurence of the minus sign which maps the high-
energy states of the LMG model onto the low-energy states
of the particle-problem �and reciprocally�. Following steps
�ii� and �iii�, one obtains the potential

V�x� =
1

2�ycn�C��y/��y − �x��2 − 2�x

��h�2s + 1���x − �y�cn�C��y/��y − �x��

− �h2s + �s + 1��x�y�sn�C��y/��y − �x��2	 , �A4�

with

C = ��x − �yx . �A5�

Here, V is periodic with period L= 4
��x−�y

K�
�y

�y−�x
�. The effec-

tive potentials are displayed in Fig. 10 for zones I, II, and IV,
where some care must now be taken for the correspondence
with the LMG model. The upper levels �close to the upper
red line� correspond to the lower levels in the LMG case.
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